Reeb Spaces of Smooth Functions on Manifolds

نویسندگان

چکیده

Abstract The Reeb space of a continuous function is the connected components level sets. In this paper, we first prove that smooth on closed manifold with finitely many critical values has structure finite graph without loops. We also show an arbitrary loops can be realized as certain values, where corresponding sets preassigned. Finally, map to induces epimorphism between fundamental groups identified natural quotient up homotopy. Dedicated Professor Toshizumi Fukui occasion his 60th birthday.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Reeb spaces of definable maps

We prove that the Reeb space of a proper definable map in an arbitrary o-minimal expansion of the reals is realizable as a proper definable quotient. We also show that the Betti numbers of the Reeb space of a map f can be arbitrarily large compared to those of X, unlike in the special case of Reeb graphs of manifolds. Nevertheless, in the special case when f : X → Y is a semi-algebraic map and ...

متن کامل

Maintaining Reeb Graphs of Triangulated 2-Manifolds

Let M be a triangulated, orientable 2-manifold of genus g without boundary, and let h be a height function over M that is linear within each triangle. We present a kinetic data structure (KDS) for maintaining the Reeb graph R of h as the heights of M’s vertices vary continuously with time. Assuming the heights of two vertices of M become equal only O(1) times, the KDS processes O((κ + g)n polyl...

متن کامل

Fractal Dimension of Graphs of Typical Continuous Functions on Manifolds

If M is a compact Riemannian manifold then we show that for typical continuous function defined on M, the upper box dimension of  graph(f) is as big as possible and the lower box dimension of graph(f) is as small as possible.  

متن کامل

Smooth Group Actions on Definite 4 - Manifolds and Moduli Spaces

In this paper we give an application of equivariant moduli spaces to the study of smooth group actions on certain 4-manifolds. A rich source of examples for such actions is the collection of algebraic surfaces (compact and nonsingular) together with their groups of algebraic automorphisms. From this collection, further examples of smooth but generally nonalgebraic actions can be constructed by ...

متن کامل

Smooth Approximation of Plurisubharmonic Functions on Almost Complex Manifolds

This note establishes smooth approximation from above for Jplurisubharmonic functions on an almost complex manifold (X, J). The following theorem is proved. Suppose X is J-pseudoconvex, i.e., X admits a smooth strictly J-plurisubharmonic exhaustion function. Let u be an (upper semi-continuous) J-plurisubharmonic function on X. Then there exists a sequence uj ∈ C∞(X) of smooth strictly Jplurisub...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2021

ISSN: ['1687-0247', '1073-7928']

DOI: https://doi.org/10.1093/imrn/rnaa301